促进癌症治疗,之江实验室团队开发端到端深度学习模型 DeepAEG

编辑 | 白菜叶

由于药物疗效的不确定性和患者的异质性,癌症药物反应的预测是现代个性化癌症治疗中的一个具有挑战性的课题。而且,药物本身的特性和患者的基因组特征可以极大地影响癌症药物反应的结果。

因此,准确、高效、全面的药物特征提取和基因组学整合方法对于提高预测精度至关重要。

江实验室的研究团队提出了一种名为DeepAEG的端到端深度学习模型,它基于完整图更新模式来预测IC50值。

研究人员提出了一种新方法,通过逐步调整序列重组来增强简化的输入输出规范化数据,消除药物分子子单一序列表示的缺陷。

DeepAEG 在多个测试集的多个评估参数上优于其他现有方法。此外,利用DeepAEG,研究人员还确定了几种潜在的抗癌药物,包括硼替佐米(它已被证明是一种有效的临床治疗选择)。研究人员认为DeepAEG在指导特定癌症治疗方案设计方面具有潜在的价值。

该研究以「DeepAEG: a model for predicting cancer drug response based on data enhancement and edge-collaborative update strategies」为题,于 2024 年 3 月 9 日发布在《BMC Bioinformatics》。

癌症仍然是全球主要死亡原因之一,近年来其发病率呈上升趋势。开发具有选择性抗肿瘤作用的新治疗药物具有重要的科学意义和临床价值。

由于癌症的异质性很强,相似的抗癌药物在同一类型的癌症患者中可能会引起不同的反应。这说明癌症个体化治疗意义非凡,即根据患者的基因型信息和生理特征,为患者推荐精准的药物治疗方案,从而提高治疗效果,减少药物副作用。

特别是癌细胞系(CCL)基因组学在个性化癌症药物设计研究中发挥着重要作用。同时,高通量测序技术的发展促进了癌细胞系数据库的发展和积累。

半数最大抑制浓度(IC50)是一个广泛使用的细胞系分析指标。分析癌症相关基因的内在特征及其与抗癌药物的相互作用,可以揭示抗癌分子的潜在特征,从而简化抗癌药物的早期筛选,提高特异性抗癌药物的发现效率。但是现有方法的有效性可能受到其有限的泛化和计算效率的限制。

目前,用于癌症药物预测的机器学习方法包括但不限于逻辑回归、支持向量机、多层神经网络和随机森林。此外,基于深度学习的方法采用复杂的深度神经网络架构,从多源数据中提取复杂的信息。

然而,由于数据表示受到某些限制,在不完整的特征学习过程中,一些潜在的信息可能不可避免地丢失。以往研究的局限性如下:

  • 现有的工作忽略了药物分子中的化学键信息,这对于区分两个化学原子之间的相互作用至关重要。该信息还有可能直接影响药物与癌细胞系相互作用的结果。
  • 以前的工作要么应用基于字符串的方法(例如 SMILES),要么应用基于图形的方法来表示药物分子。然而,这两种方法都可以为药物发现提供补充信息。充分利用这两种信息可以帮助更好地了解药物的潜在表征。
  • 以前的大多数工作仅使用单个基因组图谱来代表癌细胞系,而忽略了多组学数据或 CCL 中包含的丰富信息。基因组多组学特征的范围仍然可以大大扩展。一些已被证明对癌症具有高度信息性的基因组特征尚未被整合和利用。

为了克服上述限制,之江实验室的研究团队提出了一种新颖的多源异构图卷积神经网络,称为 DeepAEG。它是一个端到端的深度学习框架,包括用于 IC50 预测的边缘更新策略和数据增强策略。

图示:DeepAEG 的框架。(来源:论文)

DeepAEG 使用 Transformer 和包含边缘信息的图卷积神经网络来提取药物特征,并结合四个子网络(拷贝数、DNA 甲基化、基因突变、基因表达)来提取癌症组学水平的高级信息,以预测抗癌药物的疗效。

DeepAEG 可以整合多种组学功能。该模型使用一对药物-癌细胞系基因图谱以及相应的真实 IC50 数据和 IC50 量化预测值作为输出。

一方面通过图表示将药物转化为更高层次的潜在表达,另一方面通过Transformer可以得到基于子结构序列提取的向量表示。两种组合形成的药物特征与从四个全连接网络中提取的转录组信息进行拼接,然后输入到由1D CNN组成的线性网络层。研究人员使用 AdamW 优化器,学习率为 1e^-3 ,批量大小为 256,均方误差作为损失函数。模型的具体构建在 keras 中实现。

综合实验表明,边缘信息特征、SMILES 序列重组和扩展多组学图谱的融合优化了药物细胞系反应实例的特征提取能力。DeepAEG 显示了最好的 PCC、SCC 和 RMSE。并且缺失数据预测的结果也确定了潜在有效的药物(硼替佐米,AICA)和最相关的基因。结果展示了 DeepAEG 的预测能力及其在指导癌症特异性治疗方面的潜在价值。

研究人员表示未来的研究方向有以下几个:

(1)由于坐标可以量化两个原子之间的键长,并且键长、键强度和电子密度分布之间存在特定的幂律关系,因此三维分子坐标表达可以丰富药物分子信息并潜在地提高模型预测性能。

(2)通过癌细胞知识图谱,可以实现不同领域知识的整合与融合,满足癌症精准医学背景下多学科知识的整合与应用要求。

DeepAEG 将为不断发展的精准医疗领域做出贡献,促进癌症机制研究和特异性药物开发。

免费获取 DeepAEG:https://github.com/zhejianzhuque/DeepAEG

论文链接:https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05723-8

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
标签:
上一篇2025-08-07

相关推荐

  • 莱特帀手机钱包-莱特币手机钱包

    【莱特帀手机钱包】——您的虚拟货币安全助手随着数字货币的兴起,莱特帀作为一种备受关注的加密货币,越来越受到投资者的青睐,为了方便用户安全、便捷地管理莱特帀资

    2025-08-07 12:00:19
    2019
  • ttm数字货币币钱包-ttt数字货币

    TTM数字货币币钱包——您的虚拟货币钱包助手随着数字货币的普及,越来越多的人开始关注并投资数字货币,数字货币的安全存储问题成为了投资者们面临的一大挑战,为了解

    2025-08-07 12:00:19
    2011
  • 货币钱包转账违法吗

    虚拟货币钱包助手:揭秘钱包转账的合法性与风险尊敬的用户,您好!作为虚拟货币钱包助手,今天我们来探讨一下关于虚拟货币钱包转账的合法性与风险问题,什么是虚拟货币钱包

    2025-08-07 12:00:19
    2004
  • 派币今天价值多少钱(派币今日价值报告)

    派币今天价值多少钱(派币今日价值报告)如果你是一名投资者,特别是加密货币投资者,那么你可能会对派币的表现感兴趣。究竟,在今天的市场上,你的派币价值是多少呢?让我们

    2025-08-07 12:00:19
    2003
  • usdt钱包官方下载(高级版本V6.4.24)_USDT钱包是什么?

    USDT钱包是一款基于区块链技术的数字货币钱包,主要应用于泰达币(USDT)的存储、转账和交易,泰达币作为一种稳定币,其价值与美元挂钩,1 USDT兑换1美元,因此在数字货币市场

    2025-08-07 12:00:19
    2003
  • 虚拟币前十名的各币价格

    在数字货币的世界里,各种虚拟币的价格波动总是牵动着投资者的心,下面,我将为您详细介绍当前市值排名前十的虚拟币及其价格情况,帮助您更好地了解这个市场,我们需要明确

    2025-08-07 12:00:19
    2003
  • 鱼池sc钱包-鱼池钱包模式

    【鱼池SC钱包】——您的虚拟货币守护神随着区块链技术的不断发展,虚拟货币已经成为越来越多人的投资选择,为了方便用户安全、便捷地管理自己的虚拟货币资产,各种虚拟

    2025-08-07 12:00:19
    2003
  • 欧意交易所app最新下载安装_欧意OK交易平台App下载教程

    大家好,今天来跟大家分享一下如何下载安装欧意交易所的官方App,也就是欧意OK交易平台App,这个App可以帮助用户在手机上轻松进行数字资产的交易和管理,下面是详细的下

    2025-08-07 12:00:19
    2003