腾讯的研究团队进行了一项关于agent的可拓展性的研究。他们发现,通过简单的采样投票,大型语言模型(LLM)的性能随着实例化agent数量的增加而增强。这项研究首次在各种场景中验证了这一现象的普遍性,并与其他复杂方法进行了对比,探讨了这一现象背后的原因,并提出了进一步发挥scaling效应的方法。
论文标题:More Agents Is All You Need
论文地址:https://arxiv.org/abs/2402.05120
代码地址:https://github.com/MoreAgentsIsAllYouNeed/More-Agents-Is-All-You-Need

论文详细探讨了多种集成LLM的相关研究,其中包括LLM的自集成、异构LLM的集成,以及多个LLM代理协作框架的研究。通过与提出的方法进行对比,可以看出论文进行了更为全面的研究和分析。

- 将任务 query 输入到单个 LLM 或多个 LLM Agents 协作框架中,生成多个输出;
- 通过多数投票确定最终结果



基于 LLama13B
基于 LLama70B
基于 GPT-3.5-Turbo
此外,论文还分析了 性能提升与问题难度之间的关系。- 固有难度:随着任务固有难度的增加,性能提升(即相对性能增益)也会增加,但当难度达到一定程度后,增益会逐渐减少。这表明在任务过于复杂时,模型的推理能力可能无法跟上,导致性能提升的边际效应递减。
- 步骤数量:随着解决任务所需的步骤数量增加,性能提升也会增加。这表明在多步骤任务中,通过增加 agent 数量可以帮助模型更好地处理每一步,从而整体提高任务的解决性能。
- 先验概率:正确答案的先验概率越高,性能提升越大。这意味着在正确答案更有可能的情况下,增加 agent 数量更有可能带来显著的性能提升。

基于此,论文提出了两种优化策略来进一步提升方法的有效性:
- 逐步采样和投票(Step-wise Sampling-and-Voting):这种方法将任务分解为多个步骤,并在每个步骤中应用采样和投票,以减少累积错误并提高整体性能。
- 分层采样和投票(Hierarchical Sampling-and-Voting):这种方法将低概率任务分解为多个高概率子任务,并分层解决,同时可以使用不同模型来处理不同概率的子任务以降低成本。