苹果文生图大模型亮相:俄罗斯套娃式扩散,支持1024x1024分辨率

习惯了 Stable Diffusion,如今终于又迎来一个俄罗斯套娃式(Matryoshka)Diffusion 模型,还是苹果做的。

在生成式 AI 时代,扩散模型已经成为图像、视频、3D、音频和文本生成等生成式 AI 应用的流行工具。然而将扩散模型拓展到高分辨率领域仍然面临巨大挑战,这是因为模型必须在每个步骤重新编码所有的高分辨率输入。解决这些挑战需要使用带有注意力块的深层架构,这使得优化更困难,消耗的算力和内存也更多。
怎么办呢?最近的一些工作专注于研究用于高分辨率图像的高效网络架构。但是现有方法都没有展示出超过 512×512 分辨率的效果,并且生成质量落后于主流的级联或 latent 方法。
我们以 OpenAI DALL-E 2、谷歌 IMAGEN 和英伟达 eDiffI 为例,它们通过学习一个低分辨率模型和多个超分辨率扩散模型来节省算力,其中每个组件都单独训练。另一方面,latent 扩散模型(LDM)仅学习低分辨率扩散模型,并依赖单独训练的高分辨率自编码器。对于这两种方案,多阶段式 pipeline 使训练与推理复杂化,从而往往需要精心调整或进行超参。
本文中,研究者提出了俄罗斯套娃式扩散模型(Matryoshka Diffusion Models,MDM)它是用于端到端高分辨率图像生成的全新扩散模型。代码很快将释出。

论文地址:https://arxiv.org/pdf/2310.15111.pdf
该研究提出的主要观点是将低分辨率扩散过程作为高分辨率生成的一部分,通过使用嵌套 UNet 架构在多个分辨率上执行联合扩散过程。
该研究发现:MDM 与嵌套 UNet 架构一起实现了 1)多分辨率损失:大大提高了高分辨率输入去噪的收敛速度;2)高效的渐进式训练计划,从训练低分辨率扩散模型开始,按照计划逐步添加高分辨率输入和输出。实验结果表明,多分辨率损失与渐进式训练相结合可以让训练成本和模型质量获得更好的平衡。
该研究在类条件图像生成以及文本条件图像和视频生成方面评估了 MDM。MDM 让训练高分辨率模型无需使用级联或潜在扩散(latent diffusion)。消融研究表明,多分辨率损失和渐进训练都极大地提高了训练效率和质量。
我们来欣赏以下 MDM 生成的图片和视频。

方法概览
研究者介绍称,MDM 扩散模型在高分辨率中进行端到端训练,同时利用层级结构的数据形成。MDM 首先在扩散空间中泛化了标准扩散模型,然后提出了专用的嵌套架构和训练流程。
首先来看如何 在扩展空间对标准扩散模型进行泛化
与级联或 latent 方法的不同之处在于,MDM 通过在一个扩展空间中引入多分辨率扩散过程,学得了具有层级结构的单个扩散过程。具体如下图 2 所示。

具体来讲,给定一个数据点 x ∈ R^N,研究者定义了与时间相关的隐变量 z_t =  z_t^1 , . . . , z_t^R  ∈ R^N_1 ...NR。

研究者表示,在扩展空间中进行扩散建模有以下两点优点。其一,我们在推理期间通常关心全分辨率输出 z_t^R,那么所有其他中等分辨率被看作是额外的隐变量 z_t^r,增加了建模分布的复杂度。其二,多分辨率依赖性为跨 z_t^r 共享权重和计算提供了机会,从而以更高效的方式重新分配计算,并实现高效训练和推理。
接下来看 嵌套架构(NestedUNet)如何工作
与典型的扩散模型类似,研究者使用 UNet 网络结构来实现 MDM,其中并行使用残差连接和计算块以保留细粒度的输入信息。这里的计算块包含多层卷积和自注意力层。NestedUNet 与标准 UNet 的代码分别如下。

除了相较于其他层级方法的简单性,NestedUNet 允许以最高效的方式对计算进行分配。如下图 3 所示,研究者早期探索发现,当以最低分辨率分配大部分参数和计算时,MDM 实现了明显更好的扩展性。

最后是 学习
研究者使用常规去噪目标在多个分辨率下训练 MDM,如下公式 (3) 所示。

这里用到了渐进式训练。研究者按照上述公式 (3) 直接对 MDM 进行端到端训练,并展示出了比原始基线方法更好的收敛性。他们发现,使用类似于 GAN 论文中提出的简单渐进式训练方法,极大地加速了高分辨率模型的训练。
这一训练方法从一开始就避免了高成本的高分辨率训练,加速了整体收敛。不仅如此,他们还合并了混合分辨率训练,该训练方法在单个 batch 中同时训练具有不同最终分辨率的样本。
实验及结果
MDM 是一种通用技术,适用于可以逐步压缩输入维度的任何问题。MDM 与基线方法的比较如下图 4 所示。

表 1 给出了在 ImageNet(FID-50K)和 COCO(FID-30K)上的比较结果。

下图 5、6、7 展示了 MDM 在图像生成(图 5)、文本到图像(图 6)和文本到视频(图 7)方面的结果。尽管是在相对较小的数据集上进行训练的,但 MDM 仍显示出生成高分辨率图像和视频的强大零样本(zero-shot)能力。

感兴趣的读者可以阅读论文原文,了解更多研究内容。本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
标签:
上一篇2025-08-13

相关推荐

  • 莱特帀手机钱包-莱特币手机钱包

    【莱特帀手机钱包】——您的虚拟货币安全助手随着数字货币的兴起,莱特帀作为一种备受关注的加密货币,越来越受到投资者的青睐,为了方便用户安全、便捷地管理莱特帀资

    2025-08-13 23:58:23
    2019
  • ttm数字货币币钱包-ttt数字货币

    TTM数字货币币钱包——您的虚拟货币钱包助手随着数字货币的普及,越来越多的人开始关注并投资数字货币,数字货币的安全存储问题成为了投资者们面临的一大挑战,为了解

    2025-08-13 23:58:23
    2012
  • 货币钱包转账违法吗

    虚拟货币钱包助手:揭秘钱包转账的合法性与风险尊敬的用户,您好!作为虚拟货币钱包助手,今天我们来探讨一下关于虚拟货币钱包转账的合法性与风险问题,什么是虚拟货币钱包

    2025-08-13 23:58:23
    2004
  • 派币今天价值多少钱(派币今日价值报告)

    派币今天价值多少钱(派币今日价值报告)如果你是一名投资者,特别是加密货币投资者,那么你可能会对派币的表现感兴趣。究竟,在今天的市场上,你的派币价值是多少呢?让我们

    2025-08-13 23:58:23
    2003
  • usdt钱包官方下载(高级版本V6.4.24)_USDT钱包是什么?

    USDT钱包是一款基于区块链技术的数字货币钱包,主要应用于泰达币(USDT)的存储、转账和交易,泰达币作为一种稳定币,其价值与美元挂钩,1 USDT兑换1美元,因此在数字货币市场

    2025-08-13 23:58:23
    2003
  • 虚拟币前十名的各币价格

    在数字货币的世界里,各种虚拟币的价格波动总是牵动着投资者的心,下面,我将为您详细介绍当前市值排名前十的虚拟币及其价格情况,帮助您更好地了解这个市场,我们需要明确

    2025-08-13 23:58:23
    2003
  • 鱼池sc钱包-鱼池钱包模式

    【鱼池SC钱包】——您的虚拟货币守护神随着区块链技术的不断发展,虚拟货币已经成为越来越多人的投资选择,为了方便用户安全、便捷地管理自己的虚拟货币资产,各种虚拟

    2025-08-13 23:58:23
    2003
  • 欧意交易所app最新下载安装_欧意OK交易平台App下载教程

    大家好,今天来跟大家分享一下如何下载安装欧意交易所的官方App,也就是欧意OK交易平台App,这个App可以帮助用户在手机上轻松进行数字资产的交易和管理,下面是详细的下

    2025-08-13 23:58:23
    2003