国内团队成功发表Nature论文,介绍可编程、运行超千亿不同电路的DNA计算机

在计算机世界中,有传统的依赖硅芯片的计算机,也有一种基于生物形式的DNA计算机。DNA计算机利用DNA序列进行编码,通过分子生物学的运算操作来解决复杂的数学难题,形成了一种完整的信息技术形式

DNA计算机不再依赖硅晶片,而是依赖自然界中编码生命蓝图的分子,这种计算机通过实验室操作来执行计算,并以DNA链式数据作为输入和输出

与常规计算机相比,DNA 计算的一个潜在优势在于它可以存储的数据密度。理论上,DNA 每平方毫米最多可以存储 1 艾字节(exabyte)或 10 亿千兆字节。不仅如此,一滴水就能容纳数万亿 DNA 分子,这表明 DNA 计算能够并行执行海量计算的同时,只需要很少的能量。

樊春海院士和王飞副教授团队最近研发了一种可编程的DNA计算机,他们的研究成果已经在《自然》杂志上发表

请点击以下链接查看论文:https://www.nature.com/articles/s41586-023-06484-9

研究者通过集成支持通用性计算的多层 DNA 可编程门阵列(DPGA, DNA-based programmable gate array),展示了一种 DNA 集成电路(DIC)。他们发现,使用通用的单链寡核苷酸作为统一的传输信号,可以可靠地集成大规模 DIC,并能最小化泄露,实现高保真度。此外对具有 24 个可寻址双轨门的单个 DPGA 进行重新配置,可以运行超过 1000 亿个不同的电路。

此外,为了控制分子本质上的随机碰撞,研究者设计了 DNA 折纸寄存器,为级联 DPGA 的异步执行提供了方向。他们通过三层级联 DPGA(包含 30 个逻辑门、约 500 个 DNA 链)组装而成的二次方程求解 DIC 证明了这一点。

研究者进一步证明,将DPGA与模数转换器集成,可以对与疾病相关的microRNA进行分类。在无明显信号衰减的情况下,集成大规模的DPGA网络,这标志着迈向通用DNA计算的关键一步

DNA 计算机的工作原理

在生物学中,DNA 是由四种不同的分子(称为碱基)组成的链构成,这四种分子包括腺嘌呤、胸腺嘧啶、胞嘧啶和鸟嘌呤,它们的缩写分别为 A、T、C 和 G。

在电子学中,数据通常以一系列0和1进行编码。在DNA计算中,相应的数字00、01、10和11可以被编码为A、T、C和G

当具有特殊设计序列的 DNA 分子彼此混合时,它们可以结合在一起并以某种方式分离,从而可以充当逻辑门(执行与、或、非等逻辑运算)。

一直以来,DNA 计算面临的一个主要问题是开发可编程逻辑门阵列。大多数 DNA 计算机被设计为仅执行特定算法或有限数量的计算任务。

受硅基 FPGA 的启发,本文开发了一种高度可扩展的、基于 DNA 的可编程门阵列(DPGA),其采用通用单链 DNA 寡核苷酸作为均匀传输信号(DNA–UTS)。

DPGA 编程工作流程示意图可以进行如下重写: DPGA 编程工作流程示意图的图示如下:

该研究以电子集成电路指令为模型,构建了一个包含约1000条指令(超过2000个寡核苷酸)的分子指令集,从而确定了DPGA上的所有合法线路

DPGA的操作是基于程序配置路径,在门和DPGA之间接收和发送DNA-UTS。为了避免DPGA之间的串扰,本文进一步设计了一个DNA折纸寄存器来指导级联DPGA的异步计算处理。与电子对应物类似,从上游DPGA计算出的中间值通过DNA链位移写入DNA折纸寄存器,然后传输到下游DPGA

设计中,本文还采用双轨输入 / 输出端口的双轨逻辑门特性,从而允许代表高低信号的两条 DNA 链同时通过,实现 DPGA。

统一的双轨计算单元,逻辑门控 DNA-UTS 传输

接下来该研究探讨了 DNA-UTS 是否可以连接门内和 DPGA 间传输来实现计算电路,包括输入端口到门、门到门、门到输出端口(图 3a)。

在与 DNA-UTS 建立 DPGA 接线后,该研究接下来探索了用于多任务操作的 DPGA 重新配置,如图 4 所示。

DNA 计算的应用前景及技术挑战

DNA计算面临的一个关键问题是DNA分子如何能够在任何方向上流动,这使得将逻辑门组合在一起以按编程序列执行计算变得颇具挑战性

为了克服这个问题,研究者采用了DNA折纸技术。通过设计正确的DNA序列,可以使得得到的链条自身粘合在一起,并弯曲成几乎任何所需的二维或三维形状。他们还制作了DNA折纸寄存器,作为一种引导计算机内部数据流和指令的装置,有助于控制DNA分子的随机碰撞

DNA 折纸寄存器。

对于这一新型 DNA 计算机,寡核苷酸或 DNA 短片段在试管中移动,就像电子在常规计算机内穿梭一样。如前文所述,研究者使用由 30 个逻辑门、约 500 个 DNA 链组成的一个 DNA 计算机来精确求平方根。他们还用这个 DNA 计算机来识别三种与肾癌相关的遗传分子,当给它 18 个患病和 5 个健康样本时,大约可以在两小时内正确检测并分类出来。

不过研究者强调,DNA 计算机不会在传统任务中取代常规计算机。毕竟,DNA 计算机光在计算上就要花费数小时。DNA 计算机的编程和运行还需要手动操作,这有点像早期可编程的通用电子计算机 ENIAC。研究者正致力于通过结合分子反应与电控液体转移,实现 DNA 计算的自动化。

研究者指出,他们希望未来能够利用DNA计算机来执行一些复杂的算法。这样的技术将在生物医药应用领域发挥重要作用,例如细胞编程和分子诊断

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
标签:
上一篇2025-08-15

相关推荐

  • 莱特帀手机钱包-莱特币手机钱包

    【莱特帀手机钱包】——您的虚拟货币安全助手随着数字货币的兴起,莱特帀作为一种备受关注的加密货币,越来越受到投资者的青睐,为了方便用户安全、便捷地管理莱特帀资

    2025-08-15 21:57:59
    2019
  • ttm数字货币币钱包-ttt数字货币

    TTM数字货币币钱包——您的虚拟货币钱包助手随着数字货币的普及,越来越多的人开始关注并投资数字货币,数字货币的安全存储问题成为了投资者们面临的一大挑战,为了解

    2025-08-15 21:57:59
    2013
  • 货币钱包转账违法吗

    虚拟货币钱包助手:揭秘钱包转账的合法性与风险尊敬的用户,您好!作为虚拟货币钱包助手,今天我们来探讨一下关于虚拟货币钱包转账的合法性与风险问题,什么是虚拟货币钱包

    2025-08-15 21:57:59
    2004
  • 派币今天价值多少钱(派币今日价值报告)

    派币今天价值多少钱(派币今日价值报告)如果你是一名投资者,特别是加密货币投资者,那么你可能会对派币的表现感兴趣。究竟,在今天的市场上,你的派币价值是多少呢?让我们

    2025-08-15 21:57:59
    2003
  • usdt钱包官方下载(高级版本V6.4.24)_USDT钱包是什么?

    USDT钱包是一款基于区块链技术的数字货币钱包,主要应用于泰达币(USDT)的存储、转账和交易,泰达币作为一种稳定币,其价值与美元挂钩,1 USDT兑换1美元,因此在数字货币市场

    2025-08-15 21:57:59
    2003
  • 虚拟币前十名的各币价格

    在数字货币的世界里,各种虚拟币的价格波动总是牵动着投资者的心,下面,我将为您详细介绍当前市值排名前十的虚拟币及其价格情况,帮助您更好地了解这个市场,我们需要明确

    2025-08-15 21:57:59
    2003
  • 鱼池sc钱包-鱼池钱包模式

    【鱼池SC钱包】——您的虚拟货币守护神随着区块链技术的不断发展,虚拟货币已经成为越来越多人的投资选择,为了方便用户安全、便捷地管理自己的虚拟货币资产,各种虚拟

    2025-08-15 21:57:59
    2003
  • 欧意交易所app最新下载安装_欧意OK交易平台App下载教程

    大家好,今天来跟大家分享一下如何下载安装欧意交易所的官方App,也就是欧意OK交易平台App,这个App可以帮助用户在手机上轻松进行数字资产的交易和管理,下面是详细的下

    2025-08-15 21:57:59
    2003